- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Lopez-Pamies, Oscar (4)
-
Francfort, Gilles A. (3)
-
Babadjian, Jean-François (1)
-
Bourdin, Blaise (1)
-
Di Fratta, Giovanni (1)
-
Dolbow, John E (1)
-
Fonseca, Irene (1)
-
Francfort, Gilles (1)
-
Francfort, Gilles A (1)
-
Gloria, Antoine (1)
-
Kumar, Aditya (1)
-
Larsen, Christopher J (1)
-
Lefèvre, Victor (1)
-
Lewicka, Marta (1)
-
Muratov, Cyrill (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Babadjian, Jean-François; Di Fratta, Giovanni; Fonseca, Irene; Francfort, Gilles; Lewicka, Marta; Muratov, Cyrill (, Quarterly of Applied Mathematics)This article offers various mathematical contributions to the behavior of thin films. The common thread is to view thin film behavior as the variational limit of a three-dimensional domain with a related behavior when the thickness of that domain vanishes. After a short review in Section 1 of the various regimes that can arise when such an asymptotic process is performed in the classical elastic case, giving rise to various well-known models in plate theory (membrane, bending, Von Karmann, etc…), the other sections address various extensions of those initial results. Section 2 adds brittleness and delamination and investigates the brittle membrane regime. Sections 4 and 5 focus on micromagnetics, rather than elasticity, this once again in the membrane regime and discuss magnetic skyrmions and domain walls, respectively. Finally, Section 3 revisits the classical setting in a non-Euclidean setting induced by the presence of a pre-strain in the model.more » « less
-
Lefèvre, Victor; Francfort, Gilles A.; Lopez-Pamies, Oscar (, Journal of Elasticity)
-
Francfort, Gilles A.; Gloria, Antoine; Lopez-Pamies, Oscar (, Journal de Mathématiques Pures et Appliquées)
-
Kumar, Aditya; Bourdin, Blaise; Francfort, Gilles A.; Lopez-Pamies, Oscar (, Journal of the Mechanics and Physics of Solids)
An official website of the United States government
